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1 Examples of Self-Adjoint Extensions

1.1 Self-adjoint extensions of differential operators

Let S : D(S) → H be symmetric, closed, and densely defined. Last time, we made the
observation that S is self-adjoint ⇐⇒ Im(S ± i) = H ⇐⇒ ker(S∗ ∓ i) = {0}. We also
saw that S has a self-adjoint extension ⇐⇒ dim Im(S + i)⊥ = dim Im(S − i).

Example 1.1. Let H = L2(Rn), and let P = P (D) be a linear, differential operator with
constant, real coefficients:

P =
∑
|α|≤m

aαD
α, aα ∈ R, D =

1

i
∂.

Let Pmin be the minimal realization of P : Pmin = P |C∞
0

. Then Pmin is closed, densely
defined, and symmetric: if u, v ∈ C∞0 ,

〈Pu, v〉L2 =

∫
Puv dx =

∑
|α|≤m

∫
aαD

αuv dx = 〈u, Pv〉L2 .

We claim that Pmin is self-adjoint. Check that ker(P ∗min ± i) = {0}: Here, D(P ∗min) =
{u ∈ L2 : Pu ∈ L2}. If u ∈ D(Pmin), then we get a differential equation:

(P ∗min ± i)u = 0 ⇐⇒ (P (D)± i)u = 0

Take the Fourier transform:

F [(P (D)± i)u] = 0 ⇐⇒

 ∑
|α|≤m

aαξ
α ± i

 û(ξ) = 0.

Then û = 0, so u = 0.
Since Pmax = P ∗min, we get that Pmax = Pmin. So P has only one realization, which is

self-adjoint. That is, it only has one self-adjoint extension.
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Example 1.2. Let H = L2((0,∞)), and let P (D) = D = 1
i
d
dx . Let Pmin = P |C∞

0
.

Compute the deficiency indices: (P (D)± i)i = 0 for u ∈ L2((0,∞)), so(
1

i

d

dx
− i
)
u = 0 ⇐⇒ u′ + u = 0 ⇐⇒ u(x) = Ce−x ∈ L2.

So n+ = 1. For the + case, we have(
1

i

d

dx
+ i

)
u = 0 ⇐⇒ u′ − u = 0 ⇐⇒ u(x) = Cex.

But such a u /∈ L2((0,∞)), so n− = 0.
Thus, Pmin is maximal, symmetric, and has no self-adjoint extensions.

Remark 1.1. We have omitted the argument that these differential equations have no
nonclassical solutions. We have

u′ + u = 0 ⇐⇒ (exu)′ = 0,

where this derivative is in the distributional sense. We use the fact that if u ∈ D′(R) with
u′ = 0, then u is constant.

Remark 1.2. In this example, D(P ∗min) = {u ∈ L2 : Pu ∈ L2} = H1((0,∞)).

1.2 Essentially self-adjoint operators

Definition 1.1. Let S : D(S) → H be symmetric and densely defined. We say that S is
essentially self-adjoint if S is self-adjoint.

Here is an example.

Theorem 1.1 (Essential self-adjointness of the Schrödinger operator with a semibounded
potential). Let P = P (x,D) = −∆ + q(x), where q ∈ C(Rn;R). Let P0 be the minimal
realization of P : P0 = P |C∞

0
, which is closed, symmetric and densely defined. Assume that

q ≥ −C on Rn. Then P0 is self-adjoint (i.e. P (x,D) is essentially self-adjoint).

Remark 1.3. −∆ ≥ 0: If u ∈ C∞0 , 〈−∆u, u〉 =
∫
−∆uu =

∫
|∇u|2 ≥ 0. We cannot let the

operator tend to −∞ unchecked, which is why we need this semiboundedness condition.
This condition can be relaxed, but there needs to be some condition.

If q were actually bounded, this theorem is easier to prove. One can prove that a self
adjoint operator plus a bounded self-adjoint operator is still self-adjoint (and with the same
domain).
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Proof. D(P ∗0 ) = {u ∈ L2 : Pu = (−∆+q)u ∈ L2}, and P ∗0 u = Pu for u ∈ D(P ∗0 ). We shall
show that P ∗0 is symmetric; that is, 〈u, P ∗0 u〉L2 ∈ R for all u ∈ D(P ∗0 ). First, if u ∈ D(P ∗0 ),
then ∆u ∈ L2

loc. So u ∈ H2
loc = {u ∈ L2

loc : ∂αu ∈ L2
loc ∀|α| ≤ 2}. In particular, ∇u ∈ L2

loc.
We claim that if u ∈ D(P ∗0 ), then ∇u ∈ L2(Rn). We may assume that u ∈ D(P ∗0 ) is

real (by considering real and imaginary parts separately). Consider∫
ψt(x)iPu dx =

∫
ψt(x)u(−∆ + q)u dx,

where ψt(x) = ψ(tx), 0 ≤ ψ ∈ C∞0 (Rn) is a cutoff which is 1 near 0. The idea is that once
we introduce this cutoff, we can integrate by parts. We will get something like

∫
ψt|∇u|2

and will try to control this uniformly in t to use Fatou’s lemma.

We will finish the proof next time.

3


	Examples of Self-Adjoint Extensions
	Self-adjoint extensions of differential operators
	Essentially self-adjoint operators


